室内における5.2GHz帯の電波伝搬特性

佐々木 範雄*, 花海 丞 (東北電力) 工藤 貴之 (通研電気) 安達 文幸 (東北大学)

5. 2GHz-Band Radio Propagation Characteristics for Indoors

Norio SASAKI. Tasuku HANAUMI (Tohoku Electric Power Co., Inc), Takayuki KUDO (Tsuken Electric Industrial Co., Ltd) Fumiyuki ADACHI (Tohoku University)

1. まえがき

近年, 5.2GHz 帯高速無線 L A N の標準化規格である IEEE802.11a に対応した無線LAN製品が各社から提供されてき ている。伝送速度は最大で54Mbpsであり、動画など高速なデー 夕伝送がモバイル環境においても実現可能となる。

そこで、今後 5.2GHz 帯高速無線LANを構築するにあたり、 基地局 (アクセスポイント)のセル半径や置局を決定するに必要 となる、伝搬損距離特性やフェージング特性について統計的解析 を行ったので、その結果について報告する。

2. 実験環境と実験方法

実験は床面積 610 m2のオフィスビルのフロアで、90 名程度の 社員がいる環境で行った。伝搬損距離特性を得るための1m短区 間雷界強度中央値の測定と、フェージング特性を得るための瞬時 受信電界強度値を測定し、メモリレコーダへ記録した。送受信ア ンテナはコーリニアアンテナを用い、送信アンテナは 1.0m,1.5m,2.0mの高さに設置し、受信アンテナは机の高さと同じ 75cm に設置した。

1m 短区間電界強度中央値の測定では、送信局を任意の場所に 固定し,受信局を送信局から直線的に 32m まで3回移動させた。 また、瞬時受信電界強度値の測定では受信局をフロア内任意の18 個所に設定し、それぞれの場所で 20 分間測定を行った。図1に 測定系の構成を表1に測定系の諸元を示す。

3. 実験結果と解析結果

3. 1 伝搬損距離特性と伝搬損回帰式

実測した各アンテナ高の1m短区間伝搬損距離特性を図2に示

 60

㻢㻡

㻣㻜

Propagation loss (dB)

Propagation loss

 $\widehat{\mathbf{g}}$

㻣㻡

 80

図1 測定系の構成

Fig.1 Measurement setup.

表 1 測定系の諸元 Table 1 Experimental Parameters.

周波数	5.2 GHz
送信電力	10dBm
送信帯域幅	20MH _z
受信帯域幅	10MH _z
記録サンプリング速度	10ms

表2 回帰の結果 Table 2 Result of Regression.

図2 各アンテナ高での伝搬損距離特性

Fig.2 Propagation loss dependence on distance of different antenna heights.

す。室内伝搬における伝搬指距離特性は、屋外伝搬と同様に、伝 搬距離 d(m) を対数で表わすと, ほぼ直線になることが知られてい るが^[1], 本実験においても同様な傾向が表れている。

そこで、実測した1m 短区間伝搬損中央値から、最小二乗法に より次式の伝搬損回帰式を求めた。

$$
Loss = A + B \log_{10} d \tag{1}
$$

ここで、Aは定数(dB), Bは距離係数である。

その回帰の結果は表2に示すように、距離係数となるBの値は アンテナ位置が高くなるにつれて小さくなる傾向が示されてい る。これは、この周波数帯域での雷波の直進性が強く、アンテナ 位置が高くなるにつれて見通し伝搬路の影響が強くなるためと 考えられる。

また、距離係数 Bは 12.5~16.2 と自由空間の 20 の場合と比較 して小さな値となっている。これは室内壁面などにより、電波が 閉じこめられる導波効果によるものと考えられる[1]。

3. 2 フェージング特性

室内にける 5.2GHz 帯のフェージング特性を明らかにするため. 単位面積あたりの人数[人数/m2]が 0.15 のフロア内で, 任意の 18 個所で測定した瞬時受信レベル累積分布を、送信アンテナ高をパ ラメータとして表したのが図3である。横軸が瞬時受信レベルと 平均受信レベルとの相対レベルをdBで表したものであり、縦軸 が横軸の値以下となる時間率を%で表したものである。図3から 分かるように瞬時受信レベル変動特性はアンテナ高による大き な相違はほとんどないことが分かる。そこで、アンテナ高を1.5m とし、瞬時受信レベルの累積分布特性を単位面積当たりの人数を パラメータとして求めたのが図4である。実測値は実線で示し, 点線が実測値にあてはめた仲上m分布であり、その確率分布関数 は次式で表される[2]。

$$
P(R) = \frac{1}{\Gamma(m)} \gamma\left(m, \frac{mR^2}{\Omega}\right) \tag{2}
$$

ここに、Γはガンマ関数, γは第1種不完全ガンマ関数, mは $7 - 2$ ングの深さを表す指数、 Ω は R^2 の集合平均である。

両者ともほぼ一致する結果となっていることから、室内におけ る 5.2GHz 帯のフェージング特性は仲上m分布を用いて表すこと が出来る。また、単位面積あたりの人数が 0.15, 0.09 および0の 場合のフェージング指数mはそれぞれ3.3, 3.9 および49 であった。 これから分かるように、フロアの単位面積あたりの人数が多いほ どフェージングの深さは大きくなる。これは室内伝搬におけるフ ェージング要因は人による影響がほとんどで、人がメインパスや マルチパスの伝搬路を遮ることや通過することに起因するもの と考えられる。

4. むすび

5.2GHz 帯での室内伝搬損距離特性はアンテナ高に依存するこ とを示し、距離係数は自由空間より小さくなることを確認した。 室内におけるフェージング特性はアンテナ高には、ほとんど依存

図3 各アンテナ高による瞬時受信レベル累積分布 Fig.3 Received signal-level CDF on different antenna heights.

Fig.4 unit area, and Received signal-level CDF by the number of persons.

せず、その特性は仲上m分布で表すことが可能であっ た。また、フロアの単位面積あたりの人数が多いほど フェージングの深さは大きくなり、室内伝搬における フェージング要因は人による影響がほとんどである ことが分かった。

以上のことから、セル半径や置局を設計するにあた っては、アクセスポイントのアンテナ高とフロア単位 面積あたりの人数をパラメータに選定する必要性を 示すことができた。

文 献

[1] 細矢良雄他, "電波伝搬ハンドブック," (株リアライズ社 [2]奥井善久,"特殊関数とその応用," 森北出版.